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Abstract. We study by theoretical analysis and by direct numerical simulation the dynamics of a wide
class of asynchronous stochastic systems composed of many autocatalytic degrees of freedom. We describe
the generic emergence of truncated power laws in the size distribution of their individual elements. The
exponents α of these power laws are time independent and depend only on the way the elements with
very small values are treated. These truncated power laws determine the collective time evolution of the
system. In particular the global stochastic fluctuations of the system differ from the normal Gaussian
noise according to the time and size scales at which these fluctuations are considered. We describe the
ranges in which these fluctuations are parameterized respectively by: the Lévy regime α < 2, the power
law decay with large exponent (α > 2), and the exponential decay. Finally we relate these results to the
large exponent power laws found in the actual behavior of the stock markets and to the exponential cut-off
detected in certain recent measurement.

PACS. 05.40.+j Fluctuation phenomena, random processes, noise, and Brownian motion – 05.70.Ln
Nonequilibrium and irreversible thermodynamics – 02.50.-r Probability theory, stochastic processes, and
statistics

1 Introduction

It was realized since a very long time that the fluctua-
tions r(t) of stochastic systems made of many degrees of
freedom are not generically distributed by Gaussian prob-
ability distributions [1,2]. On the theoretical side, Lévy
[3] discovered at the beginning of this century that the
central limit theorem allows for a family of distributions
which decay at infinity as a power law:

P (r) ∼ r−1−α with 0 < α < 2 (1)

These distributions can be thought as the limit distribu-
tions for random walks with steps of sizes si distributed
by a power law

P (s) ∼ s−1−α.

Such processes were named Lévy flights [4].
In nature, the situation turns out to be more compli-

cated: many of the measurements produced probability
distribution functions which look like Lévy distributions
for a certain range of the stochastic variable but are cut
off. That is, they change their character above a certain
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threshold, e.g., by becoming exponentials or changing to a
power decay with α > 2 as found for the returns of stock
market data [2,5–7]. Particular examples of such distri-
butions were studied under the name of truncated Lévy
flight [8]. As required by the central limit theorem, for
very large time intervals t, these distributions cross-over
into a quite Gaussian behavior.

Recently, both the power law probability distribu-
tion of the individual steps and the truncated Lévy distri-
bution of the fluctuations were explained generically by a
series of Generalized Lotka-Volterra (GLV) models [9–12].
These models represent realistic financial, biological and
social systems composed of many autocatalytic and com-
peting stochastic subsystems [10].

In this paper we study the exact nature of the cut-
off region and the details of the cross-over process in the
framework of the GLV models. We especially describe the
emergence of the tail distribution with α ≈ 3 power law
and the exponential cut-off. The theoretical analysis below
yields well defined quantitative predictions on the various
temporal and geometric properties of the probability dis-
tribution functions, which are verified by the numerical
simulations and compared with the actual measurements
of the Hong Kong stock market. Most of the results extend
however to other models too.
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2 Theoretical analysis

2.1 Autocatalytic systems and power law

The analysis here applies to a large range of dynamical
models [10]. For definiteness we consider a specific system
W (t) formed of subsystems wi(t), i = 1, 2, ..., N :

W (t) = w1(t) + w2(t) + ...+ wN (t) (2)

distributed by a power law cumulative distribution func-
tion:

P (> w) = [w/wmin(t)]−α (3)

with the corresponding density P (w) ∝ w−1−α, where
wmin is some lower cut-off

wmin(t) = qw̄(t), (4)

i.e., usually given in terms of a fraction q of the average
w̄(t) = W (t)/N .

Such distributions emerge naturally in autocatalytic
systems [9–12] of the generic form:

wi(t+ 1) = λi(t)wi(t) + aw̄(t)− b(w̄, t)wi(t). (5)

where λi(t) is a random variable of average 〈λi(t)〉 =
m(w̄, t) and variance D.

One can show that in the large N limit, equation (5)
leads independently on the arbitrary functionsm(w̄, t) and
b(w̄, t) [13] to a power law equation (3) with α = 1/(1−q),
where q = (2a/D)/(1 + 2a/D) and the probability distri-
bution P (w) vanishes very fast for wi < qw̄ (all derivatives
of P (w) diverge to infinity as the argument approaches 0
[13]).

Consequently, the salient features of the wi(t)/w̄(t)
distribution are described by a simple dynamics [9,12]
which consists in choosing randomly at each time step
for updating one of the wi’s and multiplying it by a ran-
dom factor λ(t) extracted at each time from a probability
distribution ρ(λ):

wi(t+ 1) = λ(t)wi(t), (6)

with the lower cut-off

wi(t+ 1) ≥ qw̄(t). (7)

That is, the updated variable wi(t + 1) is constrained to
be not smaller than a lower bound qw̄(t), i.e.,

wi(t+ 1) = max{wi(t+ 1), qw̄(t)},

where w̄(t) is the average value calculated at earlier time
t. Note that all the wi’s are strictly positive and therefore

wi(t) < W (t) = Nw̄(t). (8)

In systems of the type equations (6) and (7), it has
been shown [9,12] that even if the system is not stationary
the power law equation (3) holds, and for given N and q

in the range 1 > q � 1/ lnN , the exponent α is given by
the relation:

α = 1/(1− q). (9)

Usually in financial applications q ∼ 1/3, and then the
exponent α ∼ 1.5 within the stable Lévy regime.

During our analysis of this section we will take the
distribution ρ(λ) centered around 1:

λ(t) = 1 + g(t), (10)

and for simplicity consisting of just 2 equally probable
values

g(t) = ±M. (11)

The conclusions of our analysis are not changed if one as-
sumes an arbitrary distribution ρ(λ) with finite strictly
positive support as in our numerical simulations of Sec-
tion 3, where λ has an uniform distribution in a narrow
range around 1. More work is needed for ρ(λ) other than
this finite support distribution, and the results will be re-
ported elsewhere.

Here we are interested in the distribution of the “re-
turns”:

r(τ) = [W (t+ τ)−W (t)]/W (t) (12)

as a function of the time interval τ . The use of the term
“return” in (12) as a measure of the fluctuation in the
system is borrowed from the financial applications where
W (t) is the stock market index and r(τ) is the relative
gain/loss one incurs after a time lapse τ .

Since the variation of W (t) at each time coincides with
the variation of the individual wi(t) which happened to be
randomly selected for updating by equation (6) at time t,
the value of r(τ) as defined in equation (12) is the result
of a random walk

r(τ) =
∑
k

si(t+ k), (13)

with steps si(t+ k), k = 0, 1, ..., τ − 1 of sizes [14]:

si(t+ k) = [wi(t+ k + 1)− wi(t+ k)]/W (t), (14)

which according to equations (6, 10) and (11) is written
as:

si(t+ k) = ±Mwi(t+ k)/W (t). (15)

Therefore, the sizes of the (absolute values of the) individ-
ual steps si(t+ k) in the random walk/flight process r(τ)
(Eq. (13)) have a probability distribution function similar
to equation (3) (up to the factor M/W ):

S(> s) = [s/smin]−α, (16)

where smin = Mwmin/W = Mq/N .
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2.2 Origin of truncation in autocatalytic systems

A crucial fact of the present paper is that the power law
distribution equation (16) from which the individual steps
equation (14) composing the random walk r(τ) through
equation (13) are selected is truncated from above [15].

Indeed, since wi < W for any i as shown in equa-
tion (8), the individual steps equation (14) cannot be
larger than the fixed value M , i.e.

S(> M) = 0. (17)

Note that this bound in the size of the individual steps
of the random walk r(τ) does not depend on the number
N of participants in the game nor on the exponent α of
the power law, nor on the lower cut-off wmin. One cannot
therefore hope that the effects of this upper bound would
somewhat become irrelevant, and as seen below (Eq. (26)),
by increasing N one can only delay the time

τmax = Nα

by which these effects become dominant. Therefore, for fi-
nite time intervals τ and infinite N , the effect of the trun-
cation disappears (together with the vanishing of the am-
plitude of elementary fluctuations |r(1)| < N1−α [10]). In
finance, however, we are generically in the opposite limit,
e.g. a finite number of traders trading for very long time
intervals τ which allow them to perform a total number
of elementary trading operations much larger than τmax.

Our goal in the sequel will be therefore to follow in
detail the process by which the τ = 1 (truncated at r >
M) power distribution

R(> r, 1) = S(> r) = [r/smin]−α = [r/(qM/N)]−α (18)

evolves for increasing time interval τ , and then approaches
the infinite time (τ � τmax) Gaussian-like distribution.
We will analyze explicitly R(> r, τ) only for positive r’s
to avoid unnecessary complication. However, the analysis
for negative r values is very similar.

In fact, for the probability distribution function of re-
turns R(> r, τ) one obtains a symmetric probability den-
sity R(r, τ) = dR(> r, τ)/dr which for τ = 1 coincides
with the S(s) = dS(> s)/ds probability density. On a
log-log scale the probability density lnR(r, 1) vs. ln r is
a line ending sharply around r = smin. We will see that
for larger τ values the sharp tip will erode into a flatter
“dome” and the complete/exact vanishing of the distribu-
tion at the upper cut-off r = M will evolve into a steep
but continuous decay.

2.3 Power law and truncation for τ < τmax

The probability R(> r, τ) to reach after a τ -steps walk
a distance r or larger is of course a result of the prob-
abilities of the τ individual steps which compose the
“walking”/“traveling”/“flying” [8] process. Therefore its
characteristics depend on the 3 crucial properties of the
individual steps distribution S(> s) obtained from equa-
tions (16, 18):

1. The great majority of the individual steps si are of
order smean (the average of si) and less, i.e., in the
range:

smin = qsmean = qM/N < s < 2smean = 2M/N. (19)

2. The steps of larger sizes (say larger than 2smean) are
very rare:

R(> 2M/N, 1) ∼ (q/2)α < 0.07 (20)

(we take α ∼ 1.5 as in real wealth distribution [16]).
3. There are no individual steps in r(τ) of size larger than
M :

R(> M, 1) = 0. (21)

Due to those properties, as one increases the time in-
terval τ from 1, the initial (truncated) power law distribu-
tion equation (18) R(> r, 1) = S(> r) is not significantly
affected for most of the r range. For small τ ’s, the correc-
tions to the power law are in fact limited only to the lower
and upper cut-off regions and are analyzed below.

2.3.1 The low r “dome”-like region

The low r region in R(> r, τ) is affected even for small
τ > 1 because there is a large probability that all of the τ
steps are of the order smean and lower. Consequently, the
probability R(> r, τ) for values r < τsmean = τM/N is
not given anymore by the probability R(> r, 1) = S(> r)
of obtaining it through a single step, but rather by a com-
binatoric sum of probabilities of having τ (small, pos-
itive and negative) steps summing up to r. This is of
course very similar to the way one estimates (through
Poisson/Binomial expansion) the probability of a distance
r after a τ steps Gaussian walk. The consequence is a
smoothening of the sharp end at R(r = 0, τ). This con-
cretizes in the appearance of a “dome”-like shape in the
central region (around r = 0) of the R(r, τ) probability
density.

To estimate (the time dependence of) the extent of
the “dome”-like region, we demand that the probability
of achieving distances r through 2 or more steps is larger
than the probability of achieving it through one step. Since
(τS(r/2))2 is the probability of having during τ steps at
least 2 steps of sizes at least r/2, and τS(r) is the proba-
bility of having at least one of the τ steps of size at least
r, the condition describing the “dome”-like region is:

(τS(r/2))2 > τS(r),

which by substituting the power law equation (16) for S(>
s) becomes:

{τ [r/(2smin)]−α}2 > τ(r/smin)−α,

gives the central dome region:

r < 4sminτ
1/α = 4qM/Nτ1/α. (22)
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since q is in (finance markets) practice not far from 1/4
we denote

rdome = smeanτ
1/α = M/Nτ1/α (23)

and with this notation, the condition equation (22) be-
comes

r < rdome. (24)

Thus, the power law equation (18) remains unchanged in
the range

rdome < r < M, (25)

and the power law region disappears completely when the
upper and lower limits of this interval coincide:

rdome = M,

i.e. (cf. Eq. (23) by the time that

τ1/αM/N = M

holds. This gives the maximal time for which one still has
a power-like region:

τmax = Nα. (26)

Since the power law region is the crucial feature of the
(truncated) Lévy distribution, τmax is essentially the max-
imal time interval for which the returns (12) still maintain
a Lévy-like probability distribution. Note that this value
for τmax agrees with the early estimations of reference [8]
based on the scaling R(0, τ) ∼ τ1/α of the probability
distribution peak.

2.3.2 The extremely large r > M region

In the upper cut-off region r > M the probability dis-
tribution function R(> r, τ) is affected by increasing τ
from 1 to larger values. Indeed, while values r > M are
completely disallowed for τ = 1 because of the truncation
equation (21), for τ > 1 one can have r’s in the range
M < r < τM . The probability of obtaining such values
of r corresponds to the probability of selecting repeatedly
for updating (by Eq. (6)) the largest wi’s. For instance,
the probability of obtaining a value r > KM (with K a
small integer) is roughly the probability of extracting out
of the τ steps at least 2K times steps of size at least M/2.
For K � τ this is basically the probability of at least one
step of size at least M/2 multiplied by τ and risen at the
power 2K:

R(> r = KM, τ) ∼ [τS(> M/2)]2K

∼ [τ(M/(2smin))−α]2K ,

which can also be written as

R(> r, τ) ∼
[(

N

(2q)ατ

)2
]−r/M

, (27)

i.e., R(> r, τ) decays exponentially with r. Values larger
than KM are still rigorously disallowed.

To sum up the results for small and moderate intervals
τ < τmax: except for the central dome region |r| < rdome

and the extremely large |r| > M region, the probability
distribution function R(> r, τ) is similar to the single step
probability R(> r, 1) = S(> r) (Eq. (18)). This is intu-
itively explained by the fact that the probability to arrive
after τ random steps at large (but less than M) r values
is dominated by the probability of having a single step of
order r.

The 3 regions above: central dome region r < rdome,
the Lévy-like power law region, and the extremely large
r > M exponential region are the main features of the
distribution R(> r, τ) for intervals τ < τmax.

2.4 Cross-over for τ > τmax

The time evolution of the R(> r, τ) shape depends on the
fact that while the upper cut-off region (beyond which
the power law fails) r > M is fixed, the “dome” region ex-
pands with τ according to equation (23). (Intuitively this
is because, as one increases the number of time steps τ ,
one can reach larger values of their sum r(τ) even if each
of the individual steps is of order w̄ or less.) As seen above,
this leads for intervals τ > τmax (Eq. (26)) to the disap-
pearance of the intermediate Lévy-like power law region
in the R(> r, τ) distribution. After this time, the central
dome will keep expanding on the expense of the r > M
cut-off region.

As it expands, the dome will assume a shape closer
and closer to a Gaussian-like. This will be consistent with
the central limit theorem as the involved elementary steps
will be ultimately distributed on a finite support smin <
s < M of quite limited extent compared with the r �M
range of values probed by the dome for very large times.

Indeed, for time intervals τ � τmax, the probability of
many steps of size close to M is not negligible. Thus the
dynamics consists in a random walk of individual steps of
size distributed within the finite support between 0 and
M . The distribution becomes a Gaussian-like whose ex-
pansion is dominated by the largest steps M . Since there
will be roughly one step of size M per τmax = Nα interval,
the width will expand as

σ(τ) = M(τ/τmax)1/2 = MN−α/2τ1/2. (28)

For returns much larger than this, i.e., r > σ(τ), the ex-
ponential regime equation (27) will still survive.

The above results can be verified by the numerical sim-
ulations shown below. Moreover, for time interval τ >
τmax but not too large, the power law distribution of re-
turns with exponent well outside the stable Lévy regime
of α < 2 can be obtained in the simulations, with the
exponential cut-off effect.

3 Numerical simulations

We have performed the computer simulations of autocat-
alytic system described by equations (6) and (7), where
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Fig. 1. Semi-plot of the probability density of returns r(τ )
(defined by Eq. (29)) for different time intervals τ = 1, 500,
and 12 000 (N = 500).

the random factor λ is set to uniformly distribute in the
range 0.9 < λ < 1.1. In our simulations the number of
subsystems N = 500, and the lower bound factor q = 0.3.
Thus, according to relation (9), the exponent α of the
power law distribution of w is about 1.4, which has been
verified by previous simulations [12].

Here we numerically study the distribution of the fluc-
tuations or “returns”

r(τ) = lnW (t+ τ) − lnW (t) (29)

for different time intervals τ , to compare with the above
analytic results. Note that in equation (29) we use the
logarithmic difference for the definition of return, as in
usual financial applications, which is approximately the
relative change equation (12) if the change is small. Note
that due to the lower bound qw̄ (Eq. (7)), in this system
W (t) has an increasing trend, which makes the return (29)
more possible to be positive, especially for large τ . Thus,
in our simulation results shown below, a maximum at pos-
itive finite r is obtained for large τ distribution, and the
skewness of the probability density function is positive, as
shown in Figure 1. In general, one could normalize W (t)
(wi(t)) by a value exp(κt/N) with κ constant, for detrend-
ing, and then equation (29) would change by a constant:
r(τ)→ r(τ)−κτ/N , which does not influence the form of
distribution.

With N = 500 and α ∼ 1.4, we have τmax = Nα ∼
6000 from equation (26), and the behaviors obtained for
small and large τ are different, as shown in Figure 1 for
τ = 1, 500, and 12 000. With the increase of time interval
τ , the sharp peak of the distribution curve is smeared out
into a dome-like shape, similar to the empirical findings
of financial markets [6].
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Fig. 2. The probability density of the positive returns r(τ )
(defined by Eq. (29)) in log-log plot for time intervals τ = 1, 50,
200, and 500 (N = 500, calculated after t = 105N updatings),
with a straight line of slope −3 (α = 2) for comparison.

3.1 τ < τmax

The numerical results of probability density R(r, τ) for
time intervals τ = 1 (pluses), 50 (circles), 200 (diamonds)
and 500 (stars) are presented in Figure 2. The measure-
ment was performed after t = 105N updatings, and aver-
aged over 100 runs for τ = 1 and 800 runs for τ ≥ 50. The
results for τ = 1 are just what we derive in Section 2.2,
i.e., a straight line in log-log plot with sharp end, obeying
equation (18) with α about 1.5, and a cut-off for large r.

For intervals larger than 1, the 3 regions obtained an-
alytically in Section 2.3 are clearly shown in the log-log
plots of Figure 2. The first one is the central “dome”-like
region for small r, with larger extent for larger τ , as pre-
dicted in equation (23). For small interval τ = 50, the
derivative at small r is not close to zero, that is, the sharp
end persists, while it flattens into the dome for larger in-
tervals of 200 and 500. In the intermediate r range, the
power law behavior similar to equation (18) is presented.
For small values of τ (≤ 200 in Fig. 2), the exponent α is
within the stable Lévy regime, that is, 0 < α < 2, how-
ever, for larger τ (say 500) one can obtain the exponent
α > 2, which is similar to the phenomenon shown below
for τ > τmax.

When the return r is large, the deviation from the
straight line and the curvature in log-log plot can be ob-
served (see Fig. 2), which is just the cut-off effect described
above, that is, the exponential decay for far tail distribu-
tion (similar to Eq. (27)).

3.2 τ > τmax

The crucial results of this paper are for large time interval
τ , which corresponds to realistic time scale observed in
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Fig. 3. The probability density of the positive returns r(τ ) in
log-log plot for large time intervals τ = 12 000, 25 000, 50 000,
and 500 000 of N = 500, as well as τ = 2500 of N = 50
(calculated after t = 105N updatings), with a straight line
of slope −4 (α = 3) which fits the data for a few orders of
magnitude. For τ = 500 000, only part of the distribution is
shown.

nature (e.g., financial markets). These results are the con-
sequences of the truncation in this autocatalytic system,
as discussed analytically above, and can be compared with
those of the real market data.

We have calculated the return distribution for large
τ : 12 000, 25 000, and 50 000 (averaged over 1000 runs), as
shown in Figure 3. Besides the dome-like shape for small r,
what interests us is the power law region for intermediate
and large returns. In this region the exponent α is about
3, well beyond the stable Lévy regime, but in agreement
with the recent observations in real stock market [5,6].

However, for extremely large returns, i.e., the far tail
of the distribution, the exponential cut-off effect still re-
mains, as shown in the bent of the log-log plots in Figure 3.
To see more clearly, we replot Figure 3 on a semi-log scale
to Figure 4, where the tail of return distribution looks
like a straight line, indicating an exponential-type behav-
ior. This exponentially asymptotic decay was not detected
in the empirical findings of [5] and [6], but agrees with the
most recent observation in Hong Kong stock market [7] as
shown in Section 4 below.

To see whether this phenomenon of α = 3 power law
and exponential cut-off is related to finite size effect or
is intrinsic, we perform the simulations for N = 50, and
present the result of τ = 2500 in Figure 3. The range
of power law behavior (α ∼ 3.5 for N = 50) may be
slightly shorter than that of the larger system N = 500.
Thus, the power law region before the exponential cut-off
is expected to extend for large system size (N), which has
been verified by simulations for N = 5000.

For very large τ , i.e., τ � τmax, the distribution of
returns is to approach Gaussian-like behavior based on the
central limit theorem (also expected in Sect. 2.4), which

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Returns r(τ)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

P
ro

ba
bi

lit
y 

de
ns

ity

τ=12000
τ=25000
τ=50000
α=3 power law
τ=500000

Fig. 4. Replot of Figure 3 on a semi-log scale, using larger bin
size.

has been found in reality [6]. In Figure 3 the result for
τ = 500 000 is also shown with the Gaussian-like behavior
for not too large r value, which exhibits as a parabola in
semi-log plot (Fig. 4) [17]. The exponential-type decay is
still found in Figure 4 for extremely large r as expected.

4 Discussion and conclusion

In finance, the tradings of the various investors wi are per-
formed independently. Therefore, the natural time mea-
sure is not the number of operations but the number of
operations divided by the number of components N :

T = τ/N. (30)

Thus, for the power law behavior of large τ (500,
12 000, 25 000, and 50 000) shown in Figures 2 and 3 with
exponent well outside the Lévy regime, the corresponding
T values are 1, 24, 50, and 100 (for N = 500 in our simula-
tions). Although in real market the time interval between
transactions of stocks is irregular, one could estimate from
the market transaction data [18] that the unit scale T = 1
here approximately corresponds to several minutes of real
time.

It is interesting to compare the results of this auto-
catalytic system with actual measurements of the stock
markets. The power law behavior with exponent α about
3 was observed in recent empirical studies on S&P 500 [6]
and German DAX [5], consistent with the results shown in
Figure 3 for intermediate and large returns, but not the
exponential cut-off. However, very recently it has been
found from the Hang Seng Index (HSI) of Hong Kong [7]
that the index fluctuations for the first few minutes of
daily opening behave very differently from those of the
other times, due to much higher influences of exogenous
factors at the opening. As shown in Figure 5, if we skip the
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Fig. 5. Log-log plot of the probability density of 1 minute
index moves for the Hong Kong HSI (from Jan. 1994 to Dec.
1997), with the skip of the first 20 minutes in daily opening
[7]. A straight line with slope −4 is also shown.

data in the first 20 minutes of each trading day, the dis-
tribution for 1 minute time interval index move (defined
as index(t + τ) − index(t), with the statistical properties
very similar to that of equation (29) for the high-frequency
regime, e.g., interval τ = 1 min) exhibits the phenomenon
of exponential-type decay [19] after the transient α = 3
power law region, in agreement with our simulation re-
sults of Figures 4 and 2 (τ = 500). Moreover, real markets
show the tendency of a crossover towards a Gaussian-like
behavior for long enough times [6], which has also been
found in our system (see Figs. 3 and 4 for very large in-
terval τ = 500 000 and intermediate r).

In order to account for the experimentally observed
volatility correlations, one may follow reference [10] and
feed back the absolute market returns (Eq. (29)) into the
individual gain factor (6). A possible form is using:

λ(t) = exp[〈r〉 + η(〈r2〉 − 〈r〉2)1/2]

where the angle brackets indicate averages over the last τ
steps and η is a Gaussian random number of zero mean
and unit variance. The numerical results for these more
realistic simulations will be presented elsewhere.

In summary, we have shown that the simple random
multiplicative model of reference [9], with a lower cut-
off, gives many of the properties found in reality and in
more complicated models, like e.g. the percolation model
[20]: power law with effective exponent α near 3, rounding
of the singularity at zero returns, crossover to Gaussian-
like behavior for long times. We still have to work on
implementing volatility clustering, multifractality, lack of
up-down and time reversal symmetry, and correlation be-
tween traded volume and volatility. Only the original ran-
dom walk model of Bachelier seems to us simpler than

the present model but of the above properties it has only
a Gaussian distribution.
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